3.25 A $.0 .01-\mathrm{m}^{3}$ cylinder containing nitrogen gas initially at a pressure of 200 bar and 250 K is connected to another cylinder $0.005 \mathrm{~m}^{3}$ in volume, which is initially evacuated. A valve between the two cylinders is opened until the pressures in the cylinders equalize. Find the final temperature and pressure in each cylinder if there is no heat flow into or out of the cylinder. You may assume that there is no heat transfer between the gas and the cylinder walls and that the gas is ideal with a constant-pressure heat capacity of $30 \mathrm{~J} /$ (mol K).
3.25

$$
\begin{aligned}
& P_{1} \bar{i}=200 \mathrm{bar} \\
& T_{1}=250 \mathrm{~K} \\
& V_{1}=0.01 \mathrm{~m}^{3}
\end{aligned}
$$

Find $P_{1}{ }^{f} \cdot T_{1}^{f}, P_{2}^{f} \cdot T_{2}^{f}$
for ideal gas system.

$$
\begin{aligned}
& C P^{*}=30 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{k} \\
& Q=0
\end{aligned}
$$

<sol> from mass balance

$$
\begin{aligned}
& N_{1}^{i}+N_{2}^{i}=N_{1}^{f}+N_{2}^{f} \\
\Rightarrow & \frac{P_{1}^{i} V_{1}}{R T_{1}^{i}}+0=\frac{P_{1}^{f} V_{1}}{R T_{1}^{f}}+\frac{P_{2}^{f} V_{2}}{R T_{2}^{f}} \quad \because V_{1}=2 V_{2} \\
\Rightarrow & \frac{2 P_{1} i}{T_{1}^{i}}=\frac{2 P_{1}^{f}}{T_{1}^{f}}+\frac{P_{2}^{f}}{T_{2}^{f}}-\infty
\end{aligned}
$$

From energy balance

$$
N_{1}^{i} \underline{U}_{1}^{i}+N_{2}^{i} \underline{U}_{2}^{i}=N_{1}^{f} \underline{U}_{1}^{f}+N_{2}^{f} \underline{U}_{2}^{f}-\theta
$$

for ideal gas

$$
\begin{equation*}
\underline{U}_{(t)}^{T G}=C_{V}^{*} T-C_{p}^{*} T_{R} \tag{3}
\end{equation*}
$$

subsfitate (3) Tito ©

$$
\begin{aligned}
\Rightarrow \frac{P_{1}^{i} V_{1}^{2}}{R T_{1}^{i}}\left(C_{V}^{*} T_{1}-C_{P}^{*} T_{R}\right)+0 & =\frac{P_{1}^{+} V_{1}}{R T_{1}^{+}}\left(C_{V^{*}}^{*} T_{1}^{f}-C_{P}^{*} T_{R}\right) \\
& +\frac{P_{2}^{+} V_{2}}{R T_{2}^{f}}\left(C V_{T_{2}^{*}}^{+}-C_{p}^{*} T_{R}\right)
\end{aligned}
$$

$$
\Rightarrow\left(\frac{\left(\frac{-2 P_{1}^{i}}{I_{1}^{i}}+\frac{2 P_{1}^{f}}{T_{1}^{f}}+\frac{P_{2}^{f}}{T_{2}^{f}}\right) C_{P^{*} T_{R}}^{\|}+\left(2 P_{1-2}^{i} P_{1}^{f}-2 P_{2}^{f}\right) C_{V}^{*}=0}{0} \text { from } 0\right.
$$

since $C v^{*}=0$

$$
\Rightarrow \quad 2 p_{1}^{i}=2 p_{1}^{f}+p_{2}^{f}
$$

since $P_{1}^{f}=P_{2}^{f}$

$$
\Rightarrow P_{1}^{f}=\frac{2}{3} P_{1}^{i}=P_{2}^{f}=\frac{2}{3} \times 200 \text { bar }=133 \text { bat }
$$

\#

Substitute Tito eq'n (1)

$$
\begin{align*}
& \frac{2.200 \text { bar }}{250 \mathrm{k}}=\frac{2.133 \text { bar }}{T_{1}^{f} k}+\frac{133 \text { bar }}{T_{2}^{f} k} \\
& \Rightarrow \\
& \frac{400}{250}=\frac{266}{T_{1}^{f}}+\frac{133}{T_{2}^{f}}-\oiint
\end{align*}
$$

Take cyltuder 1 as the system From mass balance

$$
\begin{equation*}
\frac{d N_{1}}{d t}=\bar{N} \tag{}
\end{equation*}
$$

From energy balance (neglect $\frac{1}{2} M r^{2}, M \psi$)

$$
\frac{d\left(N_{1} \underline{U}_{1}\right)}{d t}=\bar{N} H_{1}+\bar{Q}^{\lambda}+\bar{\omega} \bar{U}^{0}
$$

$$
\begin{aligned}
& \Rightarrow \quad N_{1} \cdot \frac{d \underline{U}_{1}}{d t}+\underline{U}_{1} \frac{d N_{1}}{d t}=\frac{d N_{1}}{d t} \cdot \underline{H_{1}} \\
& \Rightarrow \quad N_{1} \cdot \frac{d U_{1}}{d t}=\left(\underline{H}_{1}-\underline{U}_{1}\right) \frac{d N_{1}}{d t}
\end{aligned}
$$

From previous eq'n: $\quad \underline{U}^{I G}=C V^{*} T-C P^{*} T R$

$$
\underline{H}^{I n}=C p^{*}(T-T R)
$$

$$
\Rightarrow \frac{p_{1} y_{1}}{Q_{1} T_{1}} \cdot \frac{d\left(C_{V}^{*} T_{1}-C_{p}^{*} T_{p}\right)^{\text {not }}}{d t}=\left(C_{p}^{*} T_{1}-C_{p}^{*} T_{R}-C_{V}^{*} T_{1}+C_{p}^{*} T_{R}\right) \frac{d\left(\frac{p_{1} w_{1}}{k \pi}\right)}{d t}
$$

VQR are constants

$$
\begin{aligned}
& \Rightarrow \frac{P_{1}}{T_{1}} c_{v^{*}} \frac{d T_{1}}{d t}=R T_{1} \cdot \frac{d \frac{P_{1}}{T_{1}}}{d t} \\
& \Rightarrow \frac{C V^{*}}{R \cdot} \cdot \frac{d T_{1}}{T_{1}} \cdot \frac{T_{1}}{P^{\prime}} \cdot \frac{d\left(\frac{P_{1}}{\pi}\right)}{d t} \\
& \Rightarrow\left(\frac{T_{1}^{f}}{T_{1}^{\tau}}\right)^{\frac{C P^{*}}{R}}=\frac{P_{1}^{f}}{P_{1}^{\tau}} \Rightarrow\left(\frac{T_{1}^{f}}{250}\right)^{\frac{30}{8.31}}=\frac{133}{200} \\
& \Rightarrow T_{1}^{f}=250 \cdot(0.665)^{0.277}=223 \mathrm{~K}
\end{aligned}
$$

substitute into eq'" (4)

$$
\frac{400}{250}=\frac{266}{223}+\frac{133}{T_{2}{ }^{f}} \Rightarrow T_{2}^{f}=\frac{133}{0.41}=324 \mathrm{~K}
$$

