4.6 The compressor discussed in Illustrations 3.4-4 and 4.5-1 is being used to compress air from 1 bar and 290 K to 10 bar. The compression can be assumed to be adiabatic, and the compressed air is found to have an outlet temperature of 575 K .
a. What is the value of $\Delta \mathrm{S}$ for this process?
b. How much work, $\mathrm{W}_{\mathrm{s}}$, is needed per mole of air for the compression?
c. The temperature of the air leaving the compressor here is higher than in Illustration 4.5-1. How do you account for this? -

In your calculations you may assume air is an ideal gas with $\mathrm{C}_{\mathrm{p}}{ }^{*}=29.3 \mathrm{~J} /(\mathrm{mol} \mathrm{K})$.


(d) Find $\Delta S$

$$
\begin{aligned}
& d \underline{H}=T d \underline{S}+\underline{v} d P \\
& \begin{aligned}
& d \underline{H}=T \underline{S}+\underline{V} P \frac{R T}{P} \\
& \Rightarrow d \underline{S}=\frac{d H}{T}-\frac{V d P}{T}
\end{aligned} \\
& \Rightarrow \quad \int d \underline{S}=\int C P^{*} \frac{d T}{T}-\int R \frac{d P}{P} \\
& \Rightarrow \Delta \underline{S}=C P^{*} \ln \frac{T_{2}}{T_{1}}-R \ln \frac{P_{2}}{P_{1}} \\
& =29.3 \mathrm{3} / \mathrm{molk} \ln \frac{575}{290}-8.314 \mathrm{~J} / \mathrm{molit} \ln \frac{10}{1} \\
& \geqslant 20.1-19.1 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K} \\
& =1 \mathrm{~J} / m \mathrm{~m}, \mathrm{k}
\end{aligned}
$$

(b)

From energy balance

$$
\begin{aligned}
& \begin{array}{l}
\left(\frac{d U}{d t}\right)^{10}=\bar{N}_{1} H_{1}+\bar{N}_{2} H_{2}+Z_{C}+\bar{W} S-P \frac{d y^{\circ}}{d t}
\end{array} \\
& \Rightarrow \dot{W}_{S}=-\bar{N}_{1} \underline{H}_{1}-\bar{N}_{2} \underline{H}_{2} \quad \because \underline{\underline{N}}_{2}=-\bar{N}_{1} \\
& \Rightarrow \frac{\bar{W} S}{\dot{N} 1}=-\underline{H}_{1}+H_{2} \\
& \Rightarrow W_{S}=C_{p}^{*}\left(T_{2}-T_{1}\right)=29.3 \mathrm{~J} / \mathrm{mok}(575-290 \mathrm{~K}) \\
& =8350.5 \mathrm{~J} / \mathrm{mul} \text { \# }
\end{aligned}
$$

(c)

$$
\underline{W}_{S}=8350.5 \mathrm{~J} / \text { We }>7834.8 \mathrm{~J} / \text { we } \quad(P .128)
$$

$\Rightarrow$ the process is irreversible
$\Rightarrow$ part of Work is converted into heat
$\Rightarrow$ increase of interval energy
$\Rightarrow$ Temp. of outlet flow is higher

