Photolithography vs. Soft Lithography

Hard Nanoimprinting Lithogrpahy

NIL Process

Substrate

(1) Press in mold

Heat up mold and substrate (2)

- (3)
 - Mold separation after cooling

 Sub-10nm feature size • Large area (4-8 in.) • High throughput ow cost

Nanonex NX-2000 Nanoimprinter Up to 4" wafer Sub-100 nm resolution Up to 300°C, 600 psi, UV

"Soft" Lithography

George M. Whitesides http://gmwgroup.harvard.edu/ Father of Soft Lithography

Reviews:

- 1. Whitesides, G. M., *Angew. Chem. Int. Ed.* (1998).
- 2. Whitesides, G. M., *Chem. Rev.* (1999).

- Low-cost, non-lithographic method to complement photolithogrpahy.
- Use a patterned elastomer such as poly(dimethylsiloxane) (PDMS) as a mask, stamp or mold.
- Embrace chemical concepts of selfassembly, templating and crystal engineering, with soft lithographic techniques of microcontact printing and micromolding.
- Shape materials over different length scales from 1 nm to 500 mm.
- Pattern two- and three-dimensional structures on planar and curved surfaces.
- Important in MEMS and biological applications.

The Core Material of Soft Lithography

Poly(dimethylsiloxane) (PDMS)

Polycondensation Reaction:

$2HOSi(Me)_2OH \longrightarrow HO(Si(Me)_2O)_2OH + H_2O$

 $2HO(Si(Me)_2O)_2OH \longrightarrow HO(Si(Me)_2O)_4OH + H_2O$

Unique Properties of PDMS

Unique Properties:

- High flexibility and optically transparent
- High gas permeability
- Low surface energy (21.6 ×10⁻³ J/m²)
- Conformal contact to almost all surfaces

The Science of Soft Lithography

$CF_3(CF_2)_6(CH_2)_2SiCl_3$ treatment

Deformation/Distortion of Relief Structure

Five Components of Soft Lithography

Soft Lithography

- Microcontact printing (µCP)
- Replica molding (REM)
- Microtransfer molding (µTM)
- Micromolding in capillaries (MIMIC)
- Solvent-assisted micromolding (SAMIM)

Resolutior
35 nm
~2 nm
1 µm
1 µm
60 nm

Five Components of Soft Lithography

Soft Lithography

- Microcontact printing (µCP)
- Replica molding (REM)
- Microtransfer molding (µTM)
- Micromolding in capillaries (MIMIC)
- Solvent-assisted micromolding (SAMIM)

Patterned ZnO Nanowires

Principles of Microcontact Printing

Five Components of Soft Lithography

Soft Lithography

- Microcontact printing (µCP)
- Replica molding (REM)
- Microtransfer molding (µTM)
- Micromolding in capillaries (MIMIC)
- Solvent-assisted micromolding (SAMIM)

"Soft" Replica Molding

Advantages of soft-mask molding:

- The elasticity and low surface energy of the elastomeric PDMS mold allows it to be released easily.
- PDMS mold also enables manipulating the size and shape of reatures present on the mold by mechanical deformation.

Manipulating PDMS Molds

Five Components of Soft Lithography

Soft Lithography

- Microcontact printing (µCP)
- Replica molding (REM)
- Microtransfer molding (µTM)
- Micromolding in capillaries (MIMIC)
- Solvent-assisted micromolding (SAMIM)

Microtransfer Molding (µTM)

Five Components of Soft Lithography

Soft Lithography

- Microcontact printing (µCP)
- Replica molding (REM)
- Microtransfer molding (µTM)
- Micromolding in capillaries (MIMIC)
- Solvent-assisted micromolding (SAMIM)

Micromolding in Capillaries (MIMIC)

Principles of Micromolding in Capillaries

Rate of Capillary Filling

Five Components of Soft Lithography

Soft Lithography

- Microcontact printing (µCP)
- Replica molding (REM)
- Microtransfer molding (µTM)
- Micromolding in capillaries (MIMIC)
- Solvent-assisted micromolding (SAMIM)

Solvent-Assisted Micromolding (SAMIM)

- Choice of solvent is critical rapidly dissolve or swell polymer, but not PDMS mold.
- Solvent high vapor pressure and a moderately high surface tension.
- Methanol, ethanol, acetone are good; toluene and dichloromethane can not be used.

Five Components of Soft Lithography

Applications of Soft Lithography

Photolithography vs. Soft Lithography

	Photolithography	Soft Lithography	
Definition of patterns	Rigid photomask (patterned Cr supported on a quartz plate)	Elastomeric stamp or mold (a PDMS block patterned With relief features)	
Materials that can be patterned directly	Photoresist (polymers with photosensitive additives) SAMs	SAMs Unsensitized polymers (epoxy, PU, PMMA, PPV, etc. Polymer precursors Colloidal materials Sol-gel materials Organic and inorganic salts Biological macromolecules	

Minimum feature size

Nationa

ca. 60 nm

1 - 100 nm

Advantages of Soft Lithography

- Convenient, inexpensive, accessible to chemists, biologists, and material scientists.
- Basis in self-assembly tends to minimize certain types of defects.
- Many soft lithographic processes are additive and minimize waste of materials.
- Isotropic mechanical deformation of PDMS mold or stamp provides routes to complex patterns.
- No diffraction limit; features as small as 30 nm have been fabricated.
- Nonplanar surfaces (lenses) can be used as substrates.
- Generation and replication of 3D topologies or structures are possible.
- Optical transparency of the mask allows through-mask registration and processing.
- Good control over surface chemistry, very useful for interfacial engineering.
- Applicable to manufacturing: production of indistinguishable copies at 25
 25
 25
 25

Disadvantages of Soft Lithography

- Patterns in the stamp or mold may distort due to the deformation (pairing, sagging, swelling, and shrinking) of the elastomer used.
- Difficulty in achieving accurate registration with elastomers (<1 μ m).
- Compatibility with current integrate-circuit processes and materials must be demonstrated.
- Defect levels higher than photolithography.
- μCP works well with only a limited range of surfaces; MIMIC is slow; REM, μTM, and SAMIM leave a thin film of polymer over the surface.

Self-Assembled Monolayers (SAMs)

Oxidative addition:

Hexanethiolate SAM On Au (111)

(J. Am. Chem. Soc. 114, 1222, 1992)

The real power of SAMs stems from the ability to chemically tailor the terminal X groups of the alkanethiolate.
Surface organic chemistry allows controlling surface wettability, adhesion, corrosion, etch protection, chemical

and electrochemical reactivity, etc.

Substrates and Ligands that Form SAMs

Substrate	Ligand or Precursor	Binding	- Functionalized cubes and rods can	
Au	RSH, ArSH (thiols)	RS–Au	be obtained by following the reactions of Au nanoparticles	
Au	RSSR' (disulfides)	RS–Au	↑ Îd-u	SSS - N3
Au	RSR' (sulfides)	RS-Au	d-u	
Au	RSO_2H	RSO ₂ –Au	$\square \square $	sss ooc
Au	R ₃ P	R ₃ P–Au		
Ag	RSH, ArSH	RS–Ag	$h,i = \frac{1}{2}$	Br E OH
Cu	RSH, ArSH	RS-Cu	c//b ZZZZA	SSE CO. KINUS SC. CONH
Pd	RSH, ArSH	RS-Pd	TAu ³⁺ Au ³⁺ AU ³⁺ AU ³⁺ a	
Pt	RNC	RNC-Pt	Au ³⁺ Au ³⁺ Au ³⁺ Au ³⁺ Au ³⁺ Au ³⁺ Au ³⁺ Au ³⁺ To S ⁻ 5	
GaAs	RSH	RS–GaAs		S NH2 OH SSS NHCO
InP	RSH	RS–InP		XIIII O SS AND CO
SiO_2 , glass	RSiCl ₃ , RSi(OR') ₃	siloxane		
Si/Si-H	$(RCOO)_2$ (neat)	R-Si	$t \left \left\langle i \right\rangle_{i}^{NH_{2}^{1/2}} \right _{j,m,n}^{j,n} \right _{j,0}$	
Si/Si-H	RCH=CH ₂	RCH ₂ CH ₂ S	1 Ligand exchange/conjugate reactions to	COOL
Si/Si-Cl	RLi, RMgX	R-Si	provide quantum clusters with functiona groups/molecules as shown to the right	
metal oxides	RCOOH	RCOO	MO_n	
metal oxides	RCONHOH	RCONHO	$H \cdots MO_n$	
ZrO_2	RPO_3H_2	$RPO_3^{2-}\cdots Z$	r^{IV}	20
In_2O_3/SnO_2 (ITO)	RPO_3H_2	$RPO_3^{2-}\cdots M$	[n+	28

SAMs with Different Head Groups

5 μm

1 *µ*m

1 µm

- μCPed HS(CH₂)₁₅CH₃ followed by adsorption of HS(CH₂)₁₅COOH.
- The contrast arose from differences in the fractional force between the AFM tip and the surface in each region.

(Langmuir 11, 825, 1995)

Patterned SAMs as Ultrathin Resists in Selective Wet Etching

Representative Au wet-etch chemistry:

 $Au + 8CN^{-} + O_{2} + 2H_{2}O \longrightarrow 4[Au(CN)_{2}]^{-} + 4OH^{-}$ $Au + 2CN^{-} + [Fe(CN)_{6}]^{3-} \longrightarrow [Fe(CN)_{6}]^{4-} + [Au(CN)_{2}]^{-}$

Etchants Used with Patterned SAMs

Surface	SAM	Etchant (approximate pH)	
Au	RS-	$K_2S_2O_3/K_3[Fe(CN)_6]/K_4[Fe(CN)_6]/K_4[Fe(CN)_0]/K_2(14)$ CS(NH ₂) ₂ /H ₂ O ₂ (1)	$N)_{6}](14)$
Ag	RS-	Fe(NO ₃) ₃ (6) $K_2S_2O_3/K_3[Fe(CN)_6]/K_4[Fe(CN)_6]/K_6]/K_6]/K_6[Fe(CN)_6]/K_6[Fe(CN)_6]/K_6]/K_6]/K_6]/K_6[Fe(CN)_6]/K_6]/K_6]/K_6]/K_6]/K_6]/K_6]/K_6]/K$	$N_{6}^{(7)}$ [(7) $(N_{6}^{(7)})$ [(12)
Cu	RS-	FeCl ₃ /HCl (1) FeCl ₃ /NH ₄ Cl (6) H ₂ O ₂ /HCl (1)	—1μm
GaAs	RS-	$HCI/HNO_3(1)$	
Pd	RS-	$HCl/HNO_3(1)$	Anisotropic etching of SI (100
Al	RPO_3^{2-}	$HCl/HNO_{3}(1)$	
Si/SiO ₂	RSiO _{3/2} [a]	$HF/NH_4F(2)$	
glass	RSiO _{3/2} [a]	HF/NH ₄ F (partially selective)	
國五日共大日	Ŷ		31

National ChungHsing University

Patterning Wettability

Square drops of water held Polyurethane precursors selectively by surrounding hydrophobic wet patterned hydrophobic regions

SAMs Formed by µCP vs. Adsorption

µCP vs. other SAMs Patterning Techniques

Technique	SAMs	Resolution
microcontact printing (µCP)		
	RSH/Au	35 nm
	RSH/Ag	100 nm
	RSH/Cu	500 nm
	RSH/Pd	500 nm
	RPO ₃ H ₂ /Al	500 nm
	siloxane/SiO ₂	500 nm
photooxidation	RSH/Au	10 µm
photo-cross-linking	RSH/Au	10 µm
photoactivation	RSH/Au	10 µm
	siloxane/glass	10 µm
photolithography/plating	siloxane/SiO ₂	500 nm
electron-beam writing	RSH/Au	75 nm
	RSH/GaAs	25 nm
	siloxane/SiO ₂	5 nm
focused ion beam writing	RSH/Ag	10 µm
neutral metastable atom writing	RSH/Au	70 nm
-	siloxane/SiO ₂	70 nm
SPM lithography	RSH/Au	10 nm
micromachining	RSH/Au	100 nm
micropen writing	RSH/Au	10 µm

Invisible Materials

Doppler Effect

Doppler Effect
$$f_o = f_s \left(rac{v \pm v_o}{v \mp v_s}
ight)$$

Run! Run! The Flash Run!

國立

National ChungHsing University

Retroreflective Coatings

Retroreflection Mechanism

Retroreflective sheetings use tiny glass beads or cube corner elements to reflect light.

The Cat and The Fish

The light is refracted toward the normal when it passes into a denser medium.

國立中興大學

Invisible Cloak by Zhejiang University

Invisible Cloak by Zhejiang University

Side view

Invisible Cloak by Zhejiang University

Snell's Law of Refraction

Invisible Cloak Effect

What heppens if " n_2 " is < 0 ???

Harry Potter's invisible cloak

Metamaterials

Negative Refractive Index (n is < 0)

- 1. Two components:(S. Tretyakov)
 - 1) Negative permittivity
 - 2) Negative permeability
- 2. Novel metals based chiral structures (J. Pendry)
- 3. Applications:

Invisible cloak; Invisible vehicles; Invisible coatings

Chiral Structures

Newton Medal Winner (2013) John Pendry, Imperial College Londor

Chirality: An object that can not be superimposed on its mirror image

Metamaterials by Mask Etching

Copper mm-sized split rings

Microwave Region
 (>100 micrometer)
 GHz

Micrometer Scale Metamaterials

Padilla et al., *Science*, 313, 1495 (2006); *Optics Express*, 16, 7181 (2008)

Spiral Metamaterials

Ne Chefudev et al., Phys. Rev. (2007)

E. Plum et al., J. Opt. (2008)

Metamaterials by Anodization

1. Negative R. I. at IR Region

- 2. Limitations
 - 1) 2 D
 - 2) Strong energy losses
 - 3) Fabrication difficult

Transverse magnetic 4) Limit band of frequency transverse electric 5) Angle dependent 52 Zhang et al., *Science*, 321, 930 (2008); *Nature Materials*, 8, 568 (2009)

Metamaterials by FIB Milling 1

1. 3D structures, 2 风 I. shifts in microwave region (Fabry-Pe´rot effect). 53 國立中興大學 X. Zhang et al., *Nature*, 07247, 1 (2008)

Metamaterials by FIB Milling 2

Imitate reflection of flat surface on dielectric substrate

Circularly Polarized Wave Metamaterials

