Extending Resolution of Soft Lithography

Defect Patterning

Local Disorders in SAMs:

- High disorders in the transition region between two planar surfaces.
- Nigher disorders lead to less etch resisting.

Nature 394, 868 (1998)

Below 30 nm Nanocontact Printing

 夏之中興大學 ional ChungHsing University

Langmuir 19, 1963 (2003)

Soft Lithography for Microfluidics

National ChungHsing University

Microfluidic Channels

Fabrication of microfluidic channels:

- PDMS piece is released from the master.
- Bond a standard glass slide on top of it.
- Typical microchannel width: tens of micrometers.
- The thickness of the channel is controlled by the phickness of the photoresist.

Soft Lithography for Microfluidics

- Soft lithography is well suited for generating microfluidic channels in PDMS.
- Microfluidic channel finds applications in
 - CPU cooling
 - Lab-on-a chip devices
 - Bio-sensors

PDMS Channel Advantages

- The PDMS Channels have advantages over Si or glass channels:
 - Inexpensive
 - Flexible and durable
 - Simple to prototype
- Disadvantages: unstable in contact with some organic solvents and at high temperatures. Aluminum interconnects Bubble pump

7

Making Janus Particles

Reynolds number (Re) - a dimensionless parameter that describes a fluid's tendency to be turbulent.

 $R_e = v l \rho / \eta$

Laminar Flow!

Janus particles

Multilayer Soft Lithography - Microvalves

Microfluidics: Solving Mazes

國立中興大學 National ChungHsing Universi

Langmuir 19, 4714 (2003)

Nature Mazes

Iridescent Nacre Nautilus

Nature 412, 819 (2001)

Nanocontact Printing

SAMs Controlled Mineralization

 The densities of nucleation, uniform sizes and crystallographic orientation are controlled by the micropatterned SAMs.

13

Nucleation stems form a match between the pattern and
Trientation of ions adsorbed on the organic surface.

SAMs Directed Growth of Large Single Calcite Crystals

- $A = OH, CO_2H, SO_3H.$
- Site-specific nucleation of a nascent calcite crystal occurred at the imprinted SAM nanoregion.
- Micropatterned frameworks act as sites for stress release. 14

Transfer Printing of Thin Films

Soft Lithography for Organic Light-Emitting Diodes (OLEDs)

- Lamination of thin metal electrodes on an electroluminescent organic.
- van der Waals interactions establish intimate contacts.
- Reduced sensitivity to pinhole defects.
- Patterned OLEDs with sub-100 nm features.
- Migh performance displays and memory.

PNA5 101, 429 (2004)

SAMs Molecular Junctions for Molecular Electronics

Nature 441, 69 (2006)

Area (µm²)

SAMs Molecular Junctions for Molecular Electronics

og 立中興大學