Dip-Pen Lithography

A Brief History of Writing Instruments

From Quills and Bamboos to fountain pens and brushes

M. Klein and Henry W. Wynne received US patent #68445 in 1867 for an ink chamber and delivery system in the handle of the fountain pen.

The ink is fed to the nib through a "feed" via a combination of gravity and capillary action. 2

Nanoscale Fountain Pen – Dip Pen Nanolithography(DPN)

Dip-pen nanolithography (DPN) is a new scanning-probe based directwriting tool for generating such surface-patterned chemical functionality on the sub-100 nm length-scale, and it is a technique that is accessible to any researcher who can use an atomic force microscope (a scanning probe technique).

(Science 283, 661, 1999)

The Family of Scanning Probe Techniques

The basic idea: local probe

- Probe of small size measures a property in a confined region
- Size of probe determines resolution
- Current, force, E- and B-field, temperature, acoustic waves, light intensity, ...
- Create an image, cross-section, spectrum, force curve, topography, ...

The Challenge: Nanoscopic Resolution!

- Have the smallest possible probe! --> Nanofabrication
- Don't break it!
- Control the tip/sample position with nanoscopic resolution in a macroscopic instrument
- A necessity: Probe provides position feedback!
- Enemies: thermal drifts, vibration, acoustic & electric noise

Various DPN Ink-Substrate Combinations

Ink	Substrate	Notes
Alkylthiols (e.g. ODT and MHA)	Au	15 nm resolution with sharp tips on single crystal surfaces, $<$ 50 nm on polycrystalline surfaces
Ferrocenylthiols	Au	redox active nanostructures
Silazanes	SiO _x ,	patterning on oxides
	GaAs	
Proteins	Au, SiO _x	both direct write and indirect assembly
Conjugated polymers	SiO _x	polymer deposition verified spectroscopically and electrochemically
DNA	Au, SiO _x	sensitive to humidity and tip-silanization conditions
Fluorescent dyes	SiO _x	luminescent patterns
Sols	SiO _x	solid-state features
Metal salts	Si, Ge	electrochemical and electroless deposition
Colloidal particles	SiO _x	viscous solution patterned from tip
Alkynes	Si	C—Si bond formation
Alkoxysilanes	SiO _x	humidity control important
ROMP materials	SiO _x	combinatorial polymer brush arrays

(Angew. Chem. Int. Ed. 43, 30, 2004)

Various DPN Ink-Substrate Combinations

Humidity & Temp. Affect Resolution

- Ink solubility is a key factor in determining temperature and humidity dependence of growth rate.
- Increase in the deposition rate with increasing temperature.
- Different solubilities of the molecules on the Au substrates influence SAM growth rates.

AFM in a glove box

Monte Carlo Simulation of Meniscus Formation

Humidity, tip-substrate distance, wettability are parameters.
A complete simulation requires models which combine the thermodynamics of meniscus formation with the dynamic effects of ink desorption, transport through the meniscus,
and self-assembly. (*J. Chem. Phys.* 116, 3875, 2002)

DPN on Glass

- Silane is evaporated onto the AFM tip under anhydrous conditions.
- Humidity need to be kept low to prevent prepolymerization of silane.

Mercaptosilane lines

Sol-Gel DPN

 Delivery of metal oxide solgel precursors using AFM tips.

國立中興大學

 Atmospheric moisture and the water meniscus serve to hydrolyze the sol-gel
Silica - Initial Silica - Heated precursors.

(J. Am. Chem. Soc. 124, 1560, 2002)

Electrostatic DPN

- The smallest feature size is ~130 nm compared to 15 nm resolution using small molecule inks.
- Meniscus-driven transport of water-soluble polymers leads to fast diffusion and pattern smearing.

(Adv. Mater. 14, 1474, 2002)

Electrochemical DPN (E-DPN)

Electrodeposition Electrooxidation of Pt (+4V) of Si (-10V) $PtCl_6^{2^-} + 4e \rightarrow Pt + 6Cl^-$

- Water meniscus between AFM tip and surface as a reaction vessel.
- Nanoelectronic devices with sections made of different metals or semiconductors.

(J. Am. Chem. Soc. 123, 2105, 2001)

Nanoscale Writing on Nanowires

(J. Am. Chem. Soc. 1256 6409, 2004)

5 V

7 V

10 V

SAMs Nano-Electrochemistry

Picasso's World Without Weapons

 Fine-tuning (sub-nanometer) of single molecule overlayers suggests interesting possibilities for the advancement of a 3D chemical nanofabrication methodology.

(Nano Lett. 4, 845, 2004)

Writing Molecular Recognition

First Pattern

Second Pattern

Adsorbed Microspheres

Orthogonal Assembly: using well-known specificity of T-A and C-G nucleotide base pairing in DNA to guide nanoscale building blocks functionized with a particular DNA strand to complementary DNA surface

(Angew. Chem. Int. Ed. 40, 3071, 2001)

Applications for DPN

We focus on four of four key applications:

- Biomolecular micro- and nanoarrays
- Controlling bio-recognition processes from the molecular to the cellular level
- Building nanostructured materials with DPN: templates for orthogonal assembly
- DPN-patterned etch resists

DPN for Biomolecular Array Fabrication

- As a direct-write technique, DPN is particularly well-suited for patterning biological molecules on surfaces.
- DPN provides 10,000 to 100,000,000-fold increase in density.
- To screen an entire human genome for single-nucleotide polymorphism: State-of-the-art chips (20 μm features): a car space in a parking lot DPN (150 nm features): 2x2 cm² chip

DNA Nanoarrays

Thiol-end oligonucleotides on Au

Oligonucleotide-modified Au nanoparticles bound to a high-resolution DNA line by base pairing in the presence of complementary linking DNA.

- Hexanethiol-oligonucleotide on Au and acrylamideoligonucleotide on glass.
- Nanoparticle labels are particularly promising tags for nanoscale detection.

Protein Nanoarrays

(Science 295, 1702, 2002)

Nanoplotters

- Parallel DPN to compensate slow serial low throughput.
- The probes are actuated by passing DC current through a heater embedded in the probe

(Appl. Phys. Lett. 84, 789, 2004)

Nanoblotters

- A microfluidic chip for parallel and multiplexed addressing multiple tips.
- Thin PDMS membranes were used ink pads to reduce evaporation

(*Appl. Phys. Lett.* 85, 136, 2004)

Controlling Biorecognition Process

Functionalized alkanethiols as the linkers, and genetically modified cow pea mosaic virus (Cys-CPMV) as the adsorbate.

These nanometric templates are used to investigate the role of inter-virion interactions on assembly morphology and kinetics. ²³

Templates for Orthogonal Assembly

190 nm Amidine-polystyrene Particles (positive charge)

Outside of biology, the orthogonal assembly of particles is of interest in fields ranging from colloidal crystallization to magnetic information storage. 24

DPN Patterned Etch Resists

DPN-patterned etch resist provide a straightforward way of creating arrays of inorganic nanostructures (e.g. Au, Ag, Pd) on a semiconducting or insulating surface. 25

Beyond DPN: DPN-Nanograting Combinatior

Nanopen-Reader-Writer (NPRW)

bulk SAM passivation layer to inhibit writing except under EI conditions of high applied force

 $CF_{12}C_2$ -thiol in C_{10} -thiol on Au

(Langmuir 16, 3006, 2000)

120

Electrochemical Witting Nanostructures

MHA dot array showing desorption at -750 mV as function of time

(Nano Lett. 2, 1389, 2002)

accessibility to edge sites

facilitate this process.

Scanning Probe Contact Printing (SP-CP)

SP-CP

Fabrication of PDMS AFM Tips

SP-CP and Beyond

- Soft PDMS tips allow easy absorption of inks.
- MRDMS coated tip has better resolution than pure PDMS tip. 《文中兴大学 (Langmuir 19, 8951, 2003; Nano Lett. 4, 1469, 2004)

Summary of DPN

Advantages:

- High resolution (15 nm sub-100 nm)
- Good registration
- Direct write capability (multiple inks)
- Biological compatible

Disadvantages:

- Serial process low throughput
- Limited substrates and inks

