Self-Assembly of Colloidal Particles

Representative Colloidal Systems

Examples of Colloidal Dispersions

- Dairy products
- Dressings
- Chocolate

Pharmaceutics and cosmetic

- •Water-insoluble pharmaceutics
- •All kind of gels, emulsions and cosmetics

Photographic industry

Photographic emulsions (films)
X-ray plates and films
Photography materials (paper ink)

Photocopy materials (paper, ink...)

Other

•Agrochemicals, paints, dyestuffs, cement, bitumen....

Electrical an Electronic industry

Materials for displays:
phosphors
liquid crystals

Isolating materials

Emulsion Polymerization Preparation of Monodisperse Polymer Latex Colloids

Synthesis of Monodisperse Silica Microspheres - Stober Process

Diameter Control

Size (nm)	TEOS (M)	H2O (M)	NH3 (M)
275	0.3	5.0	0.5
750	0.3	10.0	2.0

Origin of Surface Charge - ζ Potential

Polymer chains are entangled and each chain starts and ends with a charged group, which can dissociate in water to provide an electrostatic charge Z*e

Three-dimensional $(SiO_2)_n$ network of Stober silica

Solution pH Determines Particle ζ -Potentia

ζ-potential of polystyrene and other latex particles are pH independent, while that of silica is highly pH dependent.

Electrostatic (Repulsive) Force & Electric Double-Layer

Commercial Monodisperse Colloidal Particle

Company	Contact Information	Size Range	General Comments
Bangs Laboratories [b]	(+1) 317 570 7020 (Tel) (+1) 317 570 7034 (Fax) info@bangslabs.com www.bangslabs.com	0.020-5.0 μm (Polystyrene) 0.3-5.0 μm (Silica)	Polystyrene (dyed, fluorescent, magnetic) and silica spheres Surface groups: carboxylic acid, aliphatic amine, chloromethyl amide, epoxy, hydrazide, aldehyde, aromatic amine, hydroxyl. Also streptavidin, secondary antibodies, Protein A, and biotin.
Duke Scientific [b]	(+1) 650 424 1177 (Tel) (+1) 650 424 1158 (Fax) info@dukesci.com www.dukesci.com	0.020-1.0 μm (Polystyrene) 0.5-1.6 μm (Silica)	Polystyrene (dyed, fluorescent) and silica spheres. Surface groups: carboxylic acid, sulfate, and a variety of others.
Dyno Particles AS	(+47) 63 89 71 00 (Tel) (+47) 63 89 74 72 (Fax) mike.griffiths@pss.aus.net www.pss.aus.net	0.5–20 μm	Polystyrene spheres (0–80% crosslinker DVB for 2–20 μm). Surface groups: carboxylic acid, amine, hydroxyl, and sulfate.
Interfacial Dynamics [b]	(+1) 503 684 8008 (Tel) (+1) 503 684 9559 (Fax) idclatex@teleport.com www.idclatex.com	0.020–10.0 µm	Polystyrene spheres (dyed, fluorescent). Surface groups: carboxylic acid, sulfate and a variety of others.
Nissan Chemicals	(+1) 713 532 4745 (Tel) (+1) 713 532 0363 (Fax) snowtex.com	0.003–0.100 µm	Colloidal silica (various dispersing media), antimony pentoxide
Polyscience [b]	(+1) 215 343 6484 (Tel) (+1) 215 343 0214 (Fax) polysci@tigger.jvnc.net www.polysciences.com	0.05–90 μm (Polystyrene) 0.05–0.45 μm (Silica)	Polystyrene (dyed, fluorescent), silica, and glass spheres. Surface groups: carboxylic acid and sulfate.
Seradyn	(+1) 317 266 2956 (Tel) (+1) 317 266 2991 (Fax) seradyn_particles@seradyn.com ww.seradyn.com	0.05–5.0 µm	Polystyrene spheres (dyed, fluorescent, magnetic). Surface groups: carboxylic acid, streptavidin, and sulfate.

Photonic Crystals: Periodic Surprises in Electromagnetism

Photonic Crystals

Photonic crystals are periodic dielectric materials.

(J.D. Joannopoulos et al., Photonic Crystals: Modeling the Flow of Light, 1995)

Fabrication of 3D Photonic Crystals

Bottom-Up Assembly

國立中國人民 Qi et al., Nature 429, 538, 2004) (http://aussie-opal.com/lr2mulbl.jpg)

Colloidal Epitaxy for Colloidal Single Crystals

- Slow deposition of colloidal particles
 PMMA Gold onto a patterned substrate car direct the crystallization of bulk
 Cover glass colloidal single crystals.
 - Confocal microscopy reveals realspace structure of fluorescent particles.

(A. van Blaaderen et al., Nature 385, 321, 1997)

Physical Confinement Induced Crystallization

- A large variety of colloidal particles, including silica, polymer latex, titania, AgSe, Se have been assembled using the physical confinement method.
- Patterned relief structures on substrate lead to assemblies of colloidal particles with different surface topologies.

(Adv. Mater. 10, 1028, 1998)

Vertical Convective Self-Assembly

- Substrate: glass, Si.
- Substrate shapes: planar, curved.
- Colloids: silica, latex.
- Crystal size: centimeters.
- Mrystallization time: days.

(Chem. Mater. 12, 1431, 1999)

Planar Colloidal Single Crystals

Single-crystalline ordering over centimeter scale.
Method provides thick (~ 100 µm) films.

Crystal Thickness & Particle Conc.

Lower Particle volume fraction Higher Particle volume fraction --- 10 layers --- 50 layers

Crystal Thickness & Particle Size

Particle size = 200 nm --- 14 layers

Particle size = 400 nm --- 7 layers

Good Agreement of Data and Theory Using Film Formation Model

Extending the Size Range of Particles Using Convective Self-Assembly

Colloidal Crystals by Spin-Coating

- The six-arm star is caused by Bragg's diffraction of visible light.
- The particle spacing and crystal thickness are ontrollable.

Stand P. et al, J. Amer. Chem. Soc. (2004)

Spin-Coating Mechansim

Shear aligned hcp layers

Non-close-packed crystal Shear force causes the formation of hexagonal closepacked layers.

Normal pressure created by material spin-off and polymerization squeeze hcp layers into each other to form

Diang, P., Chemical Communications (2005) of structures.

Colloidal Crystals on Polymer

$$\lambda_{\max} = 2n_{avg}d$$

n - Refractive Index d - Inter-Plane Distance

Jiang, P. et al, *Chem Mater* (1999)

National ChungHsing University

Yang, H. et al, Langmuir (2013)

Minimal Volume Fraction Achieved by Spin Coating

 國立中興大學 National Chung Heine University

Compatible With Standard Microfabrication

Nature is the Ultimate Nanotechnologist Antireflection Coatings

Bat / Dolphine Biosonar

Bats and dolphins seek out prey by emitting ultrasonic waves And echoes to determine where the prey is.

Moth-Eye Structures

Antireflection Coating Applications

Optimum Refractive Index Value $n_1 = \sqrt{n_0 n_S}$ Reflection Coefficient $(n_0 - n_S)^2$

$$c = \left(\frac{n_0 - n_S}{n_0 + n_S}\right)^2$$

Antiglare Coatings

Artifactual Antireflection Coatings

30